О НИЖНЕЙ ОЦЕНКЕ МУЛЬТИПЛИКАТОРА ПРЕОБРАЗОВАНИЯ ФУРЬЕ ИЗ M(L_p \to L_q)

Е. Д. Нурсултанов

Пусть F, F^{-1} — прямое и обратное преобразования Фурье в \(\mathbb{R}^n \). Функцию и назовем мультипликатором преобразования Фурье из функционального пространства Лоренца \(L^p_r(\mathbb{R}^n) \) в пространство Лоренца \(L^q_s(\mathbb{R}^n) \), если оператор \(T_u(f) = F^{-1}u Ff \) является ограниченным из пространства \(L^p_r(\mathbb{R}^n) \) в \(L^q_s(\mathbb{R}^n) \). Совокупность всех мультипликаторов из \(L^p_r \) в \(L^q_s \) обозначим через \(M(L^p_r \to L^q_s) \), данное множество является линейным нормированным пространством с нормой

\[
\| \varphi \|_{M(L^p_r \to L^q_s)} = \sup_{\|f\|_{L^p_r} \neq 0} \frac{\| T_u(f) \|_{L^q_s}}{\| f \|_{L^p_r}}.
\]

В [1] доказана следующая

ТЕОРЕМА ХЁРМЕЛАНДЕРА. Пусть \(1 < p < 2 \leq q < \infty, 1/r = 1/p - 1/q \), тогда \(L^{\infty}_r(\mathbb{R}^n) \hookrightarrow M(L^p_r(\mathbb{R}^n) \to L^q_s(\mathbb{R}^n)) \), иначе

\[
\| \varphi \|_{M(L^p_r \to L^q_s)} \leq c \sup_{e \in E} \frac{1}{|e|^{1/p + 1/q}} \int_1 |\varphi(x)| \, dx.
\]

Здесь \(E \) — множество всех компактов \(e \) с положительной мерой: \(|e| > 0 \), \(L^\infty \) — пространство Лоренца. Из [2] следует, что если \(s \geq r \), то \(L^{\infty}_r \hookrightarrow M(L^p_r \to L^q_s) \), где параметры \(p, q, r \) удовлетворяют тем же условиям, что и в теореме Хёрмандера. Целью данной работы является получение нижних оценок для \(\varphi \in M(L^p_r \to L^q_s) \).

Пусть \(a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in \mathbb{R}^n \). Будем писать \(a \leq b \), если \(a_j \leq b_j \), \(j = 1, 2, \ldots, n \). Тогда \([a, b] = \{ x \in \mathbb{R}^n : a \leq x \leq b \} = [a_1, b_1] \times \cdots \times [a_n, b_n] \) называется отрезком в \(\mathbb{R}^n \). Множество вида

\[
Q = \bigcup_{0 \leq k \leq N - 1} ([a, b] + kh),
\]

где \(k = (k_1, \ldots, k_n) \in \mathbb{Z}^n, h = (h_1, \ldots, h_n) \in \mathbb{R}^n, N = (N_1, \ldots, N_n) \in \mathbb{N}^n, kh = (k_1 h_1, \ldots, k_n h_n), h_j > b_j - a_j, j = 1, 2, \ldots, n, \) называем гармоническим отрезком в \(\mathbb{R}^n \). Очевидно, что каждый отрезок в \(\mathbb{R}^n \) является гармоническим отрезком.

Сформулируем основной результат данной работы.

ТЕОРЕМА. Пусть \(1 < p < 2 \leq q < \infty, 1 \leq r, s \leq \infty, E_0 \) — множество всех гармонических отрезков положительной меры в \(\mathbb{R}^n \). Тогда для любой неотрицательной функции \(\varphi \in M(L^p_r \to L^q_s) \) имеет место неравенство

\[
\sup_{e \in E_0} \frac{1}{|e|^{1/p + 1/q}} \int_1 |\varphi(x)| \, dx \leq c \| \varphi \|_{M(L^p_r \to L^q_s)}.
\]

В частности,

\[
\sup_{e \in E_0} \frac{1}{|e|^{1/p + 1/q}} \int_1 |\varphi(x)| \, dx \leq c \| \varphi \|_{M(L^p \to L^q)}.
\]

Введем определение правильного гармонического отрезка. Гармонический отрезок \(Q \) (см. (1)) назовем правильным, если для любого \(j = 1, 2, \ldots, n \) число \(d_j = h_j/(b_j - a_j) \) является натуральным (\(d_j \in \mathbb{N} \)).
Лемма. Пусть $0 < \beta < 1$, E_1 — множество всех правильных гармонических отрезков в \mathbb{R}^n, E_0 — множество всех гармонических отрезков в \mathbb{R}^n. Если для неотрицательной функции φ имеет место

$$
\sup_{e \in E_1} \left| e \right|^{\beta} \int_e \varphi(x) \, dx < +\infty,
$$

то

$$
\sup_{e \in E_0} \frac{1}{\left| e \right|^{\beta}} \int_e \varphi(x) \, dx \leq 2^{\beta n} \sup_{e \in E_1} \frac{1}{\left| e \right|^{\beta}} \int_e \varphi(x) \, dx.
$$

(3)

Доказательство. Пусть Q — произвольный гармонический отрезок из E_0 (см. (1)). Если

$$
b'_j = b_j + \left\{ \frac{h_j}{(b_j - a_j)} \right\} \quad j = 1, 2, \ldots, n,
$$

где $\{x\}$, $[x]$ — соответственно дробная и целая части числа x. Тогда множество

$$
Q' = \bigcup_{0 \leq k \leq N - 1} ([a, b'] + hk)
$$

является правильным гармоническим отрезком так, что $Q \subset Q'$ и $|Q'| \leq 2^n |Q|$. Из свойства неотрицательности функции φ имеем

$$
\frac{1}{|Q|^{\beta}} \int_Q \varphi(x) \, dx \leq \frac{1}{|Q'|^{\beta}} \int_Q' \varphi(x) \, dx,
$$

откуда, учитывая произвольность выбора Q из E_0, получим (3).

Доказательство теоремы. Согласно утверждению леммы для доказательства теоремы достаточно установить неравенство

$$
c \| \varphi \|_{M(L_{p_r} \to L_{q_h})} \geq \sup_{e \in E_1} \frac{1}{\left| e \right|^{1/p + 1/q}} \int_e \varphi(x) \, dx,
$$

(4)

где E_1 — множество всех правильных гармонических отрезков в \mathbb{R}^n.

Пусть Q — произвольный элемент E_1, тогда он имеет вид

$$
Q = \bigcup_{0 \leq k \leq N - 1} ([c, d] + kh),
$$

где $[c, d] = [c_1, d_1] \times \cdots \times [c_n, d_n], k = (k_1, \ldots, k_n), h = (h_1, \ldots, h_n), N = (N_1, \ldots, N_n) \in \mathbb{N}^n$, $kh = (k_1 h_1, \ldots, k_n h_n), h_j/(d_j - c_j) \in \mathbb{N}, j = 1, \ldots, n$. Данному правильному гармоническому отрезку сопоставим правильный гармонический отрезок

$$
D = \bigcup_{1 \leq k \leq M - 1} ([0, \delta] + k\eta),
$$

(5)

где

$$
M_j = \frac{h_j}{d_j - c_j}, \quad \eta_j = \frac{\pi}{h_j}, \quad \delta_j = \frac{\pi}{N_j h_j}, \quad j = 1, \ldots, n.
$$

(6)
Из определения класса $M(L_{pr} \to L_{qs})$ имеем

$$
\| \varphi \|_{M(L_{pr} \to L_{qs})} = \sup_{\|f\|_{L_{pr}} = 1} \| F^{-1} \varphi F \|_{L_{qs}} = \sup_{\|g\|_{L_{q's}} = 1} \sup_{\|f\|_{L_{pr}} = 1} \int_{\mathbb{R}^n} F^{-1} \varphi F f(y) \varphi(y) \, dy \\
\geq \sup_{|e| > 0} \left| \frac{1}{|e|^{1/q'}} \int_{\mathbb{R}^n} \varphi(x) \int e^{i x y} \, dy \int e^{-i x z} \, dz \right| \\
\geq \left(\frac{1}{|D|^{1/q' + 1/p}} \right)^2 \int_{\mathbb{R}^n} \varphi(x + c) \left(\int e^{i x y} \, dy \right)^2 \, dx,
$$

где $c = (c_1, \ldots, c_n)$.

Учитывая представление (5) гармонического отрезка D, имеем

$$
\| \varphi \|_{M(L_{pr} \to L_{qs})} \geq \left(\frac{2}{\pi} \right)^2 n \left(\frac{\delta}{|D|^{1/q' + 1/p}} \right)^2 \int_{[-\pi/2, \pi/2]^n} \varphi \left(\frac{2x}{\delta} + c \right) \left(\int \frac{M_j \eta_j x_j}{x_j} \right)^2 \, dx
$$

Сделаем замену $\delta_j x_j/2$ на x_j, $j = 1, \ldots, n$. Используя неотрицательность функции φ, получим

$$
\| \varphi \|_{M(L_{pr} \to L_{qs})} \geq \left(\frac{2}{\pi} \right)^2 n \left(\frac{\delta_j}{|D|^{1/q' + 1/p}} \right)^2 \int_{[-\pi/2, \pi/2]^n} \varphi \left(\frac{2x}{\delta_j} + c \right) \left(\int \frac{M_j \eta_j x_j}{x_j} \right)^2 \, dx
$$

Если воспользоваться теперь соотношениями $N_j = \eta_j / \delta_j$, $j = 1, \ldots, n$, и (6), заменить $N_j x_j$ на x_j, то последнее выражение примет вид

$$
\left(\frac{2}{\pi} \right)^2 n \left(\frac{\delta_j}{|D|^{1/q' + 1/p}} \right)^2 \int_B \varphi \left(\frac{2x}{\eta_j} + c \right) \left(\int \frac{M_j x_j}{x_j} \right)^2 \, dx,
$$

где $B = [-\frac{\pi}{2} N_1, \frac{\pi}{2} N_1] \times \cdots \times [-\frac{\pi}{2} N_n, \frac{\pi}{2} N_n]$.

Далее, как и раньше, принимая во внимание неотрицательность φ, оценим снизу интеграл в (7):

$$
2^{-n} \sum_{k_1=0}^{N_1-1} \cdots \sum_{k_n=0}^{N_n-1} M_1^2 \int_{\pi k_1}^{\pi k_1 + \pi / M_1} \cdots M_n^2 \int_{\pi k_n}^{\pi k_n + \pi / M_n} \varphi \left(\frac{x}{\eta} + c \right) \, dx
$$

$$
= 2^{-n} \prod_{j=1}^{n} M_j^2 \eta_j \sum_{0 \leq k \leq N-1} \int_{[c, c + \pi/(M \eta)] + \pi k / \eta} \varphi(x) \, dx
$$

$$
= 2^{-n} \prod_{j=1}^{n} M_j^2 \eta_j \sum_{0 \leq k \leq N-1} \int_{[c, d] + k h} \varphi(x) \, dx.
$$
Таким образом, учитывая
\[
\prod_{j=1}^{n} \frac{\delta_j N_j^{-1} M_j^2 \eta_j}{|D|^{1/q+1/p}} = (\pi^n)^{2-(1/q'+1/p)} \left(\prod_{j=1}^{n} N_j (d_j - c_j) \right)^{-(1/p'+1/q)}
\]
получим
\[
\|\varphi\|_{M(L_{p'} \to L_{q'})} \geq C_{pq} \frac{1}{|Q|^{1/p'+1/q}} \int_{Q} \varphi(x) \, dx.
\]
В силу произвольности выбора \(Q\) из \(E_1\) верно неравенство (4), следовательно, и неравенство (2). Теорема доказана.

Функцию \(f\) назовем обобщенно-монотонной (невозврастающей) в \(\mathbb{R}^n\), если для любого \(x \in \mathbb{R}^n, x_j \neq 0, j = 1, \ldots, n\), имеет место
\[
|f(x)| \leq c(|x_1| \cdots |x_n|)^{-1} \left| \int_{[0,x]} f(y) \, dy \right|.
\]
Здесь \([0,x] = \{ y \in \mathbb{R}^n : 0 \leq y_j \text{ sgn} x_j \leq |x_j|, j = 1, \ldots, n\}.\) Все монотонные и квазимонотонные функции являются обобщенно-монотонными. Обратное не всегда верно.

ПРИМЕР. Пусть \(\beta > 0\),
\[
f(x) = \begin{cases} |x|^{-\beta} & \text{при } x \in [2k, 2k + 1), k \in \mathbb{Z}, \\ 0 & \text{при } x \in [2k - 1, 2k), k \in \mathbb{Z}. \end{cases}
\]
Функция \(f(x)\) не является монотонной и квазимонотонной, в то же время является обобщенно-монотонной.

СЛЕДСТВИЕ 1. Пусть \(1 < p < 2 \leq q < \infty, 1 \leq r \leq s \leq \infty, \) \(\varphi\) – знакопределенная, обобщенно-монотонная функция. Тогда для того чтобы \(\varphi \in M(L_{p'} \to L_{q'})\), необходимо и достаточно, чтобы
\[
\sup_{Q \in E_0} \frac{1}{|Q|^{1/p'+1/q}} \int_{Q} |\varphi(x)| \, dx < \infty,
\]
где \(E_0\) – множество всех отрезков в \(\mathbb{R}^n\) положительной меры, т.е. всех параллелепипедов с параллельными плоскостями сторонами.

ДОКАЗАТЕЛЬСТВО. Достаточно доказать для неотрицательной функции \(\varphi\), что
\[
\sup_{Q \in E_0} \frac{1}{|Q|^{1/p'+1/q}} \int_{Q} \varphi(x) \, dx \leq \sup_{Q \in E_0} \frac{1}{|Q|^{1/p'+1/q}} \int_{Q} \varphi(x) \, dx,
\]
где \(E\) – множество всех компактов в \(\mathbb{R}^n\). Действительно,
\[
\sup_{e \in E} \frac{1}{|e|^{1/p'+1/q}} \int_{e} \varphi(x) \, dx \leq \sup_{e \in E} \frac{1}{|e|^{1/p'+1/q}} \int_{e} \frac{1}{|x_1| \cdots |x_n|} \int_{[0,x]} \varphi(y) \, dy \, dx
\]
\[
\leq \sup_{Q \in E_0} \frac{1}{|Q|^{1/p'+1/q}} \int_{Q} \varphi(x) \, dx \, \sup_{e \in E} \frac{1}{|e|^{1/p'+1/q}} \int_{e} \frac{1}{(|x_1| \cdots |x_n|)^{1-(1/p'+1/q)}} \, dx
\]
\[
= c \sup_{Q \in E_0} \frac{1}{|Q|^{1/p'+1/q}} \int_{Q} \varphi(x) \, dx.
\]
Локализование завершено.

Пусть \(M \) некоторое фиксированное семейство множеств \(e \subset \mathbb{R}^n \) конечной положительной меры (\(|e| > 0\)). Для интегрируемой на каждом \(e \in E \) функции \(\varphi \) определим функцию

\[
\varphi(t, M) = \sup_{|e| \in M} \left| \frac{1}{|e|} \int_0^t \varphi(x) \, dx \right|, \quad t \in (0, \infty),
\]

которую назовем средней функцией для \(\varphi \) по сети \(M \).

Будем говорить, что функция \(\varphi \) имеет доминирующие гармонические осцилляции в \(\mathbb{R}^n \), если

\[
\sup_{t > 0} \frac{\varphi(t, E)}{\varphi(t, E_0)} < \infty.
\]

Здесь \(E \) множество всех компактов в \(\mathbb{R}^n \), \(E_0 \) множество всех гармонических отрезков в \(\mathbb{R}^n \). Множество всех функций, имеющих доминирующие гармонические осцилляции, обозначим через \(\Lambda \).

Множество \(\Lambda \) содержит все кусочно-монотонные функции [3] и обобщенно-монотонные функции.

Следствие 2. Пусть \(1 < p < 2 \leq q < \infty, 1 \leq r \leq s \leq \infty, \varphi \) — знакоопределенная функция из \(\Lambda \). Тогда для того чтобы \(\varphi \in M(L_{pr} \to L_{qs}) \), необходимо и достаточно, чтобы \(\varphi \in L_{r, \infty} \), где \(1/r = 1/p - 1/q \).

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ